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Background (1) – Kernel Regression

• Kernel Regression (KR)
– Popularized for image processing by Hiro Takeda 

(supervised by Peyman Milanfar) from University of 
California Santa Cruz

– Dated technique (2007)

• Interesting because…
– Simple 

– Proposed a complete image/video regression model 
and framework

– Model was extended in 2010 by Takeda for video data 
• Applied to video up-conversion research.
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Background (2) – Similar Concepts

• Takeda’s flavour of KR is similar to:
– Moving least-squares 

• Reconstruct continuous surface from unorganized points 
(e.g. point cloud)

– Normalized convolution
• Generate regularly spaced points from irregularly sampled 

data, and then perform convolution

– Bilateral filter
• Noise-reduction filter that preserve edges, uses Gaussian 

and Euclidean distance for weights

– Edge-directed interpolation
• Anisotropic filtering that applies smooth data along “edges”
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Top-Level View

• Takeda’s image interpolation KR will be covered in this presentation

• Each sampled measurement �� is represented by � � 	, 
�� � ,	� � � , … (higher order terms), as well as the relative 
distance from the position of interest � to each of the ��

5

The position of the 

sampled measurements 

are solid 

The hollow point is the 

position to perform 

interpolation



Top-Level View

• Takeda’s image interpolation KR will be covered in this presentation

• Each sampled measurement �� is represented by � � 	, 
�� � ,	� � � , … (higher order terms), as well as the relative 
distance from the position of interest � to each of the ��

6

Define an analysis 

window



Top-Level View

• Takeda’s image interpolation KR will be covered in this presentation

• Each sampled measurement �� is represented by � � 	, 
�� � ,	� � � , … (higher order terms), as well as the relative 
distance from the position of interest � to each of the ��

7

Classical KR



Top-Level View

• Takeda’s image interpolation KR will be covered in this presentation

• Each sampled measurement �� is represented by � � 	, 
�� � ,	� � � , … (higher order terms), as well as the relative 
distance from the position of interest � to each of the ��

8

Steering KR

an edge that KR believes 

should exist



KR Theory - Assumptions

• There exists a continuous signal upon which the 
input data were sampled from
– Otherwise continuous mathematics cannot be 

justified to operate on a set of data points

• This continuous signal is assumed to 
– Accurately describe the data

– Real and infinitely differentiable
• Otherwise Taylor’s theorem does not hold

• The analysis window chosen for a coordinate � is 
a valid Taylor local neighbourhood to the 
continuous underlying signal
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KR Theory – Regression Model

• Regression with additive error

• �� = � �� + �� , � = 1,… , �
– Measured data is 	��∈ ℝ
– Coordinates of �� is �� ∈ ℝ�

– � is the # of measured data in the neighbourhood

– Model discrepancy error is �� ∈ ℝ
– Regression function is � ∙
– � ∙ can be non-linear, but it should be representable 

as a linear combination of some chosen basis
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KR Theory – Taylor Expansion

• 1D Taylor’s theorem for real analytic functions: 

� � =� � +�� � � − � + ��� � ��� �
� +⋯

– � is some point in the neighbourhood of �
• Apply the theorem to the 2D regression: 

� �� = � �
+ �� �  �� − �
+ �� − �  � � � �� − �
+⋯

• The goal is to estimate � � 	, �� � ,� � � , …  
– In the 1D case, � � , �� � , ��� � , … is to be estimated.

– For signal interpolation, �	is assumed to be a white and zero-mean 
noise, and � � 	is assigned to be the data value �	at coordinate �

– A second order kernel regression would use a Taylor approx. of order 2
• i.e. estimate only � � 	, �� � , and 	� � �
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KR Theory – Compact Representation

• After some matrix manipulation, the Taylor expansion of � � could 
be written as

� �� = � � + �� �  �� − � + �� − �  � � � �� − � +⋯

= !" + !# �� − � + !� vech �� − � �� − �  +⋯

where ()*+ � ,
, - = � , -  

• Parameters of interest for estimation are 
– !", the predicted signal value at coordinate �
– !# = �� � = ./ 0

.01
./ 0
.0�

 
, the signal’s gradient at coordinate �

– !� = #
�

.�/ 0
.01�

2 .�/ 0
.01.0�

.�/ 0
.0��

 
, components of the Hessian
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KR Theory – Optimization Formulation

• Formulate the 3	-order estimation of !4 45"6 as an optimization 
problem.

• Assume sample measurements � that are farther away from the 
desired coordinate � will be less significant in estimation of � � .
– Represent this by using a weights on each of the ��‘s

• Takeda chose to use a weighted least-squares approach .

7�8. :; < =�� − !" + !# �� − � + !� vech �� − � �� − �  >

�5#+⋯  ?�@A �� − �
• The kernel function @A � was chosen to be a Gaussian centered at 

�, and B modifies the support of @ by a linear transformation B.
– i.e. @ can be scaled and rotated by the matrix B

• This formulation has an analytical solution for !4 45"6
• Takeda referred to the case of B = C as classical KR.
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Examples (1) – Interpolation (1)
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Examples (1) – Interpolation (2)
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Examples (1) – Interpolation (3)
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Examples (1) – Interpolation (4)
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Improved Edge-directed: Jeremy Ranger



Examples (1) – Interpolation (5)
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Statistical: Jeremy Ranger



Examples (1) – Interpolation (6)
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Total variation: Hussein Aly



Examples (1) – Interpolation (7)
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Total variation: Hussein Aly



SKR Theory – Img. Orientation Est. (1)

• Assumes the local signal 
orientation of the data 
should be perpendicular to 
the gradient of each of the 
sampled measurement �’s

– Think “orientation” as 
“direction parallel to edges”

• Maximize the average angle 
between the orientation 
vector and the gradient
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SKR Theory – Img. Orientation Est. (2)

• Max. average angle of all sample measurements 
within the analysis window

• Least-squares formulation of task yields a convex 
optimization problem:

• ∑ � E� �0F∈GH = � ∑ E�E� 0F∈GH � = � I��
– WhereE� is �� �J , the analysis window K� is centered at 

the position of the current sample under consideration ��
– � ∈ ℝ� is the orientation vector

7��.� � I��
LM,N)*�	�O � � = 1

• Normalized norm condition added for simple solution
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SKR Theory – Lagrange Multipliers

• Lagrange multipliers

• P �, λ = � I�� − λ � � − 1
• Set 

.Q

.� = 0 gives I�� = λ�
– � must be an eigenvector of I�that corresponds 

to λ, an eigenvalue of I�
• Then � I�� = � λ� = λ

The max. occurs when λ is the largest eigenvalue

• Singular-value decomposition (SVD) can find λ and �
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SKR Theory – Compute Eigenvectors

I� = ∑ �� �� �� ��  0F∈GH

=
∑ ./ 0F

.S1
�

0F∈GH ∑ ./ 0F
.S10F∈GH

./ 0F
.S�

∑ ./ 0F
.S�

./ 0F
.S10F∈GH ∑ ./ 0F

.S�
�

0F∈GH

=
⋯ ./ 0F∈TH

.S1 ⋯

⋯ ./ 0F∈TH
.S� ⋯

⋮ ⋮
./ 0F∈TH

.S1
./ 0F∈TH

.S�
⋮ ⋮

≝ W W

• )# and )�: horizontal and vertical spatial directions, respectively

• Fact: The right singular vectors of W (call it X)from a SVD are the 
eigenvectors of W W
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SKR Theory – “Steering” Support

• To modify the original support of the kernel function @ such that it 
“steers” along the orientation of the local data
– Takeda’s work had the original support of @ being circular in shape

– Would need an elliptical shape along the edges after the steering 
operation

• Rotate and scale the function support of @
• Use tools from algebra; let: 

– Y:[→[ be a linear transformation from a vector space to itself, 

– ] = ,#, … , ,4 and ^ = )#, … , )4 are different basis sets for	[
• Then the matrices of Y	w.r.t. _ and w.r.t. ^ are related by:

Y ^ ` = ] ` Y ] a ] �̀#
– (Note): Two square matrices b and 3 are said to be similar if there is 

an invertible �, such that 3 = �b��#
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SKR Theory – “Steering” Support
Y ^ ` = ] ` Y ] a ] �̀#

• Let Y represent the entire function support steering operation 
(rotation and scaling of original support), and let ] be an 
orthonormal basis set that have one of its basis vectors parallel to 
the estimated local signal orientation vector �
– In other words, let ]	be the right singular vectors, X from the previous 

SVD decomposition of I�
• Then T	 could	then	be	an	intuitive	diagonal	scaling	matrix,	that	is	meant	

to	operate	on	the	basis	X:

Y ^ ` ≝ s� = t�X�
u� 0
0 1

u�
X� 

u� = λ1vw1
λ�vw1 	 , t� =

λ1λ�vw�
>

x
, y#, y�	and z	are regularization parameters

• Takeda decided the scaling u� of the oriented support should be a 
function of the λ‘s of the SVD of I�
– Corresponds to the energy or confidence of the estimated orientation
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SKR Theory – Steering Kernel

• Instead of using B� = C, ∀� as the linear transform on 

the kernel function, use B� = +s�
�1�

– to describe the ellipse as a rotated and scaled version of a 
circular support

• Takeda used a 2D Gaussian as the kernel function @. 
Written explicitly for this choice of B�:
@AH �� − � = -)� s�

2|+� )�} − �� − �  s� �� − �
2+�

• This looks very similar to a bivariate Gaussian 
distribution with it’s “footprint” controlled by a 
covariance matrix 
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SKR Theory – Algorithm Procedure

• Center the analysis window to the nearest sample measurement ��
to the desired interpolation coordinate �
– The coordinate origin of the window would be located at the position 

coordinate of ��. Call this position ��.

• Obtain an estimate of the gradient of the y’s within the window
– Run classical KR but pass �� as the interpolation coordinate.

– This essentially estimates the betas of all �’s within the analysis 
window.

– Store the !#’s (gradient term) of these �’s .

• Compute and store the steering kernel support matrix s� for all �’s 
in the entire image

• For each interpolation positions �, perform steering KR by using the 
classical KR but with the weight (kernel) function @ computed from 
the stored s� that corresponds to the �’s within the local analysis 
window.
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Example (2) – Inpainting (1)
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Example (2) – Inpainting (2)
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Example (2) – Inpainting (2)

• Note: I wonder how this relates to compressed sensing?
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Example (3) - Denoise
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Discussion (1)

• This framework is a typical regression problem. 

– The regression function could used other forms of 
image representation tools (i.e. other basis) for 
specific types of images

– However, the use of Taylor approximation allowed 
both the signal value and its nth-order derivatives to 
be jointly estimated

• This is desirable for applications where motion estimation 
(ME) algorithms are often inaccurate

• Errors in the ME algorithm would have less chance of 
creating visually unbearable up-conversion artefacts
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Discussion (2)

• Euclidean distances were used in the optimization 
formulation 

– Quadratic objective functions heavily penalize outliers to 
the assumed model; thus regions of the image that are not 
well-represented by the Taylor approx. have trouble

• Could introduce a penalty term (the prior term in 
Markov image frameworks) in the optimization 
formulation at the expense of foregoing an analytical 
solution (the weighted least-squares)

– Since Hussein Aly’s total variation image magnification 
framework from 2004 was able to recover more details in 
certain situations
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Summary

• The KR technique for digital image processing was 
introduced this tutorial seminar

– This is a very clean and intuitive regression framework

• Even though the modelling of an image as a continuous 
analytical function is unrealistic, it allowed the use of 
Taylor approximation

– The Taylor approximation does not require regularly 
sampled measurements

• One solution to the local signal orientation estimation 
problem of the was also introduced

– Takeda used a least-squares formulation, with hints of PCA
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